Close Menu

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Madden NFL 26 Rushes to Xbox Game Pass in February

    YouTube TV Launches a Raft of New Streaming Packages From $55 a Month

    Work Up a Sweat at Home With These 7 Expert-Approved Workout Apps

    Facebook X (Twitter) Instagram
    • Artificial Intelligence
    • Business Technology
    • Cryptocurrency
    • Gadgets
    • Gaming
    • Health
    • Software and Apps
    • Technology
    Facebook X (Twitter) Instagram Pinterest Vimeo
    Tech AI Verse
    • Home
    • Artificial Intelligence

      Read the extended transcript: President Donald Trump interviewed by ‘NBC Nightly News’ anchor Tom Llamas

      February 6, 2026

      Stocks and bitcoin sink as investors dump software company shares

      February 4, 2026

      AI, crypto and Trump super PACs stash millions to spend on the midterms

      February 2, 2026

      To avoid accusations of AI cheating, college students are turning to AI

      January 29, 2026

      ChatGPT can embrace authoritarian ideas after just one prompt, researchers say

      January 24, 2026
    • Business

      New VoidLink malware framework targets Linux cloud servers

      January 14, 2026

      Nvidia Rubin’s rack-scale encryption signals a turning point for enterprise AI security

      January 13, 2026

      How KPMG is redefining the future of SAP consulting on a global scale

      January 10, 2026

      Top 10 cloud computing stories of 2025

      December 22, 2025

      Saudia Arabia’s STC commits to five-year network upgrade programme with Ericsson

      December 18, 2025
    • Crypto

      Bernstein Discusses Bitcoin’s Weakest Bear Market Yet – “Nothing Broke”

      February 9, 2026

      Ethereum Price Hits Breakdown Target — But Is a Bigger Drop to $1,000 Coming?

      February 9, 2026

      Damex Secures MiCA CASP Licence, Establishing Its Position as a Tier-1 Digital Asset Institution in Europe

      February 9, 2026

      Bitget and BlockSec Introduce the UEX Security Standard, Setting a New Benchmark for Universal Exchanges

      February 9, 2026

      3 Meme Coins To Watch In The Second Week Of February 2026

      February 9, 2026
    • Technology

      Madden NFL 26 Rushes to Xbox Game Pass in February

      February 9, 2026

      YouTube TV Launches a Raft of New Streaming Packages From $55 a Month

      February 9, 2026

      Work Up a Sweat at Home With These 7 Expert-Approved Workout Apps

      February 9, 2026

      Don’t Throw Away Your Laptop: How to Install Windows 11 On Unsupported Hardware

      February 9, 2026

      Your Recap of Super Bowl 2026 Ads Is Here: Baby Yoda, Pokemon and Much More

      February 9, 2026
    • Others
      • Gadgets
      • Gaming
      • Health
      • Software and Apps
    Check BMI
    Tech AI Verse
    You are at:Home»Technology»A biological 0-day? Threat-screening tools may miss AI-designed proteins.
    Technology

    A biological 0-day? Threat-screening tools may miss AI-designed proteins.

    TechAiVerseBy TechAiVerseOctober 4, 2025No Comments9 Mins Read3 Views
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr Email Reddit
    A biological 0-day? Threat-screening tools may miss AI-designed proteins.
    Share
    Facebook Twitter LinkedIn Pinterest WhatsApp Email

    A biological 0-day? Threat-screening tools may miss AI-designed proteins.

    Ordering DNA for AI-designed toxins doesn’t always raise red flags.

    Designing variations of the complex, three-dimensional structures of proteins has been made a lot easier by AI tools.


    Credit:

    Historical / Contributor


    On Thursday, a team of researchers led by Microsoft announced that they had discovered, and possibly patched, what they’re terming a biological zero-day—an unrecognized security hole in a system that protects us from biological threats. The system at risk screens purchases of DNA sequences to determine when someone’s ordering DNA that encodes a toxin or dangerous virus. But, the researchers argue, it has become increasingly vulnerable to missing a new threat: AI-designed toxins.

    How big of a threat is this? To understand, you have to know a bit more about both existing biosurveillance programs and the capabilities of AI-designed proteins.

    Catching the bad ones

    Biological threats come in a variety of forms. Some are pathogens, such as viruses and bacteria. Others are protein-based toxins, like the ricin that was sent to the White House in 2003. Still others are chemical toxins that are produced through enzymatic reactions, like the molecules associated with red tide. All of them get their start through the same fundamental biological process: DNA is transcribed into RNA, which is then used to make proteins.

    For several decades now, starting the process has been as easy as ordering the needed DNA sequence online from any of a number of companies, which will synthesize a requested sequence and ship it out. Recognizing the potential threat here, governments and industry have worked together to add a screening step to every order: the DNA sequence is scanned for its ability to encode parts of proteins or viruses considered threats. Any positives are then flagged for human intervention to evaluate whether they or the people ordering them truly represent a danger.

    Both the list of proteins and the sophistication of the scanning have been continually updated in response to research progress over the years. For example, initial screening was done based on similarity to target DNA sequences. But there are many DNA sequences that can encode the same protein, so the screening algorithms have been adjusted accordingly, recognizing all the DNA variants that pose an identical threat.

    The new work can be thought of as an extension of that threat. Not only can multiple DNA sequences encode the same protein; multiple proteins can perform the same function. To form a toxin, for example, typically requires the protein to adopt the correct three-dimensional structure, which brings a handful of critical amino acids within the protein into close proximity. Outside of those critical amino acids, however, things can often be quite flexible. Some amino acids may not matter at all; other locations in the protein could work with any positively charged amino acid, or any hydrophobic one.

    In the past, it could be extremely difficult (meaning time-consuming and expensive) to do the experiments that would tell you what sorts of changes a string of amino acids could tolerate while remaining functional. But the team behind the new analysis recognized that AI protein design tools have now gotten quite sophisticated and can predict when distantly related sequences can fold up into the same shape and catalyze the same reactions. The process is still error-prone, and you often have to test a dozen or more proposed proteins to get a working one, but it has produced some impressive successes.

    So, the team developed a hypothesis to test: AI can take an existing toxin and design a protein with the same function that’s distantly related enough that the screening programs do not detect orders for the DNA that encodes it.

    The zero-day treatment

    The team started with a basic test: use AI tools to design variants of the toxin ricin, then test them against the software that is used to screen DNA orders. The results of the test suggested there was a risk of dangerous protein variants slipping past existing screening software, so the situation was treated like the equivalent of a zero-day vulnerability.

    “Taking inspiration from established cybersecurity processes for addressing such situations, we contacted the relevant bodies regarding the potential vulnerability, including the International Gene Synthesis Consortium and trusted colleagues in the protein design community as well as leads in biosecurity at the US Office of Science and Technology Policy, US National Institute of Standards and Technologies, US Department of Homeland Security, and US Office of Pandemic Preparedness and Response,” the authors report. “Outside of those bodies, details were kept confidential until a more comprehensive study could be performed in pursuit of potential mitigations and for ‘patches’… to be developed and deployed.”

    Details of that original test are being made available today as part of a much larger analysis that extends the approach to a large range of toxic proteins. Starting with 72 toxins, the researchers used three open source AI packages to generate a total of about 75,000 potential protein variants.

    And this is where things get a little complicated. Many of the AI-designed protein variants are going to end up being non-functional, either subtly or catastrophically failing to fold up into the correct configuration to create an active toxin. The only way to know which ones work is to make the proteins and test them biologically; most AI protein design efforts will make actual proteins from dozens to hundreds of the most promising-looking potential designs to find a handful that are active. But doing that for 75,000 designs is completely unrealistic.

    Instead, the researchers used two software-based tools to evaluate each of the 75,000 designs. One of these focuses on the similarity between the overall predicted physical structure of the proteins, and another looks at the predicted differences between the positions of individual amino acids. Either way, they’re a rough approximation of just how similar the proteins formed by two strings of amino acids should be. But they’re definitely not a clear indicator of whether those two proteins would be equally functional.

    In any case, DNA sequences encoding all 75,000 designs were fed into the software that screens DNA orders for potential threats. One thing that was very clear is that there were huge variations in the ability of the four screening programs to flag these variant designs as threatening. Two of them seemed to do a pretty good job, one was mixed, and another let most of them through. Three of the software packages were updated in response to this performance, which significantly improved their ability to pick out variants.

    There was also a clear trend in all four screening packages: The closer the variant was to the original structurally, the more likely the package (both before and after the patches) was to be able to flag it as a threat. In all cases, there was also a cluster of variant designs that were unlikely to fold into a similar structure, and these generally weren’t flagged as threats.

    What does this mean?

    Again, it’s important to emphasize that this evaluation is based on predicted structures; “unlikely” to fold into a similar structure to the original toxin doesn’t mean these proteins will be inactive as toxins. Functional proteins are probably going to be very rare among this group, but there may be a handful in there. That handful is also probably rare enough that you would have to order up and test far too many designs to find one that works, making this an impractical threat vector.

    At the same time, there are also a handful of proteins that are very similar to the toxin structurally and not flagged by the software. For the three patched versions of the software, the ones that slip through the screening represent about 1 to 3 percent of the total in the “very similar” category. That’s not great, but it’s probably good enough that any group that tries to order up a toxin by this method would attract attention because they’d have to order over 50 just to have a good chance of finding one that slipped through, which would raise all sorts of red flags.

    One other notable result is that the designs that weren’t flagged were mostly variants of just a handful of toxin proteins. So this is less of a general problem with the screening software and might be more of a small set of focused problems. Of note, one of the proteins that produced a lot of unflagged variants isn’t toxic itself; instead, it’s a co-factor necessary for the actual toxin to do its thing. As such, some of the screening software packages didn’t even flag the original protein as dangerous, much less any of its variants. (For these reasons, the company that makes one of the better-performing software packages decided the threat here wasn’t significant enough to merit a security patch.)

    So, on its own, this work doesn’t seem to have identified something that’s a major threat at the moment. But it’s probably useful, in that it’s a good thing to get the people who engineer the screening software to start thinking about emerging threats.

    That’s because, as the people behind this work note, AI protein design is still in its early stages, and we’re likely to see considerable improvements. And there’s likely to be a limit to the sorts of things we can screen for. We’re already at the point where AI protein design tools can be used to create proteins that have entirely novel functions and do so without starting with variants of existing proteins. In other words, we can design proteins that are impossible to screen for based on similarity to known threats, because they don’t look at all like anything we know is dangerous.

    Protein-based toxins would be very difficult to design, because they have to both cross the cell membrane and then do something dangerous once inside. While AI tools are probably unable to design something that sophisticated at the moment, I would be hesitant to rule out the prospects of them eventually reaching that sort of sophistication.

    Science, 2025. DOI: 10.1126/science.adu8578  (About DOIs).

    John is Ars Technica’s science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots.



    24 Comments

    Share. Facebook Twitter Pinterest LinkedIn Reddit WhatsApp Telegram Email
    Previous ArticlePhilips Hue lights are up to 55% off ahead of October Prime Day
    Next Article Removing these 50 objects from orbit would cut danger from space junk in half
    TechAiVerse
    • Website

    Jonathan is a tech enthusiast and the mind behind Tech AI Verse. With a passion for artificial intelligence, consumer tech, and emerging innovations, he deliver clear, insightful content to keep readers informed. From cutting-edge gadgets to AI advancements and cryptocurrency trends, Jonathan breaks down complex topics to make technology accessible to all.

    Related Posts

    Madden NFL 26 Rushes to Xbox Game Pass in February

    February 9, 2026

    YouTube TV Launches a Raft of New Streaming Packages From $55 a Month

    February 9, 2026

    Work Up a Sweat at Home With These 7 Expert-Approved Workout Apps

    February 9, 2026
    Leave A Reply Cancel Reply

    Top Posts

    Ping, You’ve Got Whale: AI detection system alerts ships of whales in their path

    April 22, 2025660 Views

    Lumo vs. Duck AI: Which AI is Better for Your Privacy?

    July 31, 2025248 Views

    6.7 Cummins Lifter Failure: What Years Are Affected (And Possible Fixes)

    April 14, 2025148 Views

    6 Best MagSafe Phone Grips (2025), Tested and Reviewed

    April 6, 2025111 Views
    Don't Miss
    Technology February 9, 2026

    Madden NFL 26 Rushes to Xbox Game Pass in February

    Madden NFL 26 Rushes to Xbox Game Pass in February Why You Can Trust CNET…

    YouTube TV Launches a Raft of New Streaming Packages From $55 a Month

    Work Up a Sweat at Home With These 7 Expert-Approved Workout Apps

    Don’t Throw Away Your Laptop: How to Install Windows 11 On Unsupported Hardware

    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Get the latest creative news from SmartMag about art & design.

    About Us
    About Us

    Welcome to Tech AI Verse, your go-to destination for everything technology! We bring you the latest news, trends, and insights from the ever-evolving world of tech. Our coverage spans across global technology industry updates, artificial intelligence advancements, machine learning ethics, and automation innovations. Stay connected with us as we explore the limitless possibilities of technology!

    Facebook X (Twitter) Pinterest YouTube WhatsApp
    Our Picks

    Madden NFL 26 Rushes to Xbox Game Pass in February

    February 9, 20260 Views

    YouTube TV Launches a Raft of New Streaming Packages From $55 a Month

    February 9, 20261 Views

    Work Up a Sweat at Home With These 7 Expert-Approved Workout Apps

    February 9, 20260 Views
    Most Popular

    7 Best Kids Bikes (2025): Mountain, Balance, Pedal, Coaster

    March 13, 20250 Views

    VTOMAN FlashSpeed 1500: Plenty Of Power For All Your Gear

    March 13, 20250 Views

    This new Roomba finally solves the big problem I have with robot vacuums

    March 13, 20250 Views
    © 2026 TechAiVerse. Designed by Divya Tech.
    • Home
    • About Us
    • Contact Us
    • Privacy Policy
    • Terms & Conditions

    Type above and press Enter to search. Press Esc to cancel.