Close Menu

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Amazon announces further layoffs, 16,000 roles impacted

    No more chasing competitors or following trends: Why RuneScape is going back to its British roots

    Jack Emmert returns to Cryptic Studios as CEO

    Facebook X (Twitter) Instagram
    • Artificial Intelligence
    • Business Technology
    • Cryptocurrency
    • Gadgets
    • Gaming
    • Health
    • Software and Apps
    • Technology
    Facebook X (Twitter) Instagram Pinterest Vimeo
    Tech AI Verse
    • Home
    • Artificial Intelligence

      ChatGPT can embrace authoritarian ideas after just one prompt, researchers say

      January 24, 2026

      Ashley St. Clair, the mother of one of Elon Musk’s children, sues xAI over Grok sexual images

      January 17, 2026

      Anthropic joins OpenAI’s push into health care with new Claude tools

      January 12, 2026

      The mother of one of Elon Musk’s children says his AI bot won’t stop creating sexualized images of her

      January 7, 2026

      A new pope, political shake-ups and celebs in space: The 2025-in-review news quiz

      December 31, 2025
    • Business

      New VoidLink malware framework targets Linux cloud servers

      January 14, 2026

      Nvidia Rubin’s rack-scale encryption signals a turning point for enterprise AI security

      January 13, 2026

      How KPMG is redefining the future of SAP consulting on a global scale

      January 10, 2026

      Top 10 cloud computing stories of 2025

      December 22, 2025

      Saudia Arabia’s STC commits to five-year network upgrade programme with Ericsson

      December 18, 2025
    • Crypto

      Large XRP Whales Sold $800 Million, Will Price Drop Again?

      January 28, 2026

      EMCD x BeInCrypto Webinar Recap: Inflation, Volatility, and Practical Frameworks for Safer Crypto Decisions

      January 28, 2026

      What Does Retail Attention Rotating to Safe Havens Mean for a Potential Silver Top?

      January 28, 2026

      How January’s Sharp Decline in Spot Volume Is Threatening the Crypto Market Structure

      January 28, 2026

      What To Expect From Solana Price In February 2026?

      January 28, 2026
    • Technology

      Garmin rolling out new stable smartwatch update with course related bug fix

      January 28, 2026

      Windows 11 KB5074109 update nukes Nvidia gaming performance and stability

      January 28, 2026

      Peak60: Premium keyboard brand launches kiln-fired ceramic case for Wooting 60HE and kin with launch discount

      January 28, 2026

      Apple Creator Studio is now available for $13 per month: What’s included and what it means for creators

      January 28, 2026

      TurboTax Deluxe is 44 percent off ahead of tax season

      January 28, 2026
    • Others
      • Gadgets
      • Gaming
      • Health
      • Software and Apps
    Check BMI
    Tech AI Verse
    You are at:Home»Technology»Inside OpenAI’s big play for science 
    Technology

    Inside OpenAI’s big play for science 

    TechAiVerseBy TechAiVerseJanuary 27, 2026No Comments13 Mins Read3 Views
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr Email Reddit
    Inside OpenAI’s big play for science 
    Share
    Facebook Twitter LinkedIn Pinterest WhatsApp Email

    Inside OpenAI’s big play for science 

    In the three years since ChatGPT’s explosive debut, OpenAI’s technology has upended a remarkable range of everyday activities at home, at work, in schools—anywhere people have a browser open or a phone out, which is everywhere.

    Now OpenAI is making an explicit play for scientists. In October, the firm announced that it had launched a whole new team, called OpenAI for Science, dedicated to exploring how its large language models could help scientists and tweaking its tools to support them.

    The last couple of months have seen a slew of social media posts and academic publications in which mathematicians, physicists, biologists, and others have described how LLMs (and OpenAI’s GPT-5 in particular) have helped them make a discovery or nudged them toward a solution they might otherwise have missed. In part, OpenAI for Science was set up to engage with this community.

    And yet OpenAI is also late to the party. Google DeepMind, the rival firm behind groundbreaking scientific models such as AlphaFold and AlphaEvolve, has had an AI-for-science team for years. (When I spoke to Google DeepMind’s CEO and cofounder Demis Hassabis in 2023 about that team, he told me: “This is the reason I started DeepMind … In fact, it’s why I’ve worked my whole career in AI.”)

    So why now? How does a push into science fit with OpenAI’s wider mission? And what exactly is the firm hoping to achieve?

    I put these questions to Kevin Weil, a vice president at OpenAI who leads the new OpenAI for Science team, in an exclusive interview last week.

    On mission

    Weil is a product guy. He joined OpenAI a couple of years ago as chief product officer after being head of product at Twitter and Instagram. But he started out as a scientist. He got two-thirds of the way through a PhD in particle physics at Stanford University before ditching academia for the Silicon Valley dream. Weil is keen to highlight his pedigree: “I thought I was going to be a physics professor for the rest of my life,” he says. “I still read math books on vacation.”

    Asked how OpenAI for Science fits with the firm’s existing lineup of white-collar productivity tools or the viral video app Sora, Weil recites the company mantra: “The mission of OpenAI is to try and build artificial general intelligence and, you know, make it beneficial for all of humanity.”

    Just imagine the future impact this technology could have on science he says: New medicines, new materials, new devices. “Think about it helping us understand the nature of reality, helping us think through open problems. Maybe the biggest, most positive impact we’re going to see from AGI will actually be from its ability to accelerate science.”

    He adds: “With GPT-5, we saw that becoming possible.” 

    As Weil tells it, LLMs are now good enough to be useful scientific collaborators. They can spitball ideas, suggest novel directions to explore, and find fruitful parallels between new problems and old solutions published in obscure journals decades ago or in foreign languages.

    An industry I care about is.

    That wasn’t the case a year or so ago. Since it announced its first so-called reasoning model—a type of LLM that can break down problems into multiple steps and work through them one by one—in December 2024, OpenAI has been pushing the envelope of what the technology can do. Reasoning models have made LLMs far better at solving math and logic problems than they used to be. “You go back a few years and we were all collectively mind-blown that the models could get an 800 on the SAT,” says Weil.

    But soon LLMs were acing math competitions and solving graduate-level physics problems. Last year, OpenAI and Google DeepMind both announced that their LLMs had achieved gold-medal-level performance in the International Math Olympiad, one of the toughest math contests in the world. “These models are no longer just better than 90% of grad students,” says Weil. “They’re really at the frontier of human abilities.”

    That’s a huge claim, and it comes with caveats. Still, there’s no doubt that GPT-5, which includes a reasoning model, is a big improvement on GPT-4 when it comes to complicated problem-solving. Measured against an industry benchmark known as GPQA, which includes more than 400 multiple-choice questions that test PhD-level knowledge in biology, physics, and chemistry, GPT-4 scores 39%, well below the human-expert baseline of around 70%. According to OpenAI, GPT-5.2 (the latest update to the model, released in December) scores 92%. 

    Overhyped

    The excitement is evident—and perhaps excessive. In October, senior figures at OpenAI, including Weil, boasted on X that GPT-5 had found solutions to several unsolved math problems. Mathematicians were quick to point out that in fact what GPT-5 appeared to have done was dig up existing solutions in old research papers, including at least one written in German. That was still useful, but it wasn’t the achievement OpenAI seemed to have claimed. Weil and his colleagues deleted their posts.

    Now Weil is more careful. It is often enough to find answers that exist but have been forgotten, he says: “We collectively stand on the shoulders of giants, and if LLMs can kind of accumulate that knowledge so that we don’t spend time struggling on a problem that is already solved, that’s an acceleration all of its own.”

    He plays down the idea that LLMs are about to come up with a game-changing new discovery. “I don’t think models are there yet,” he says. “Maybe they’ll get there. I’m optimistic that they will.”

    But, he insists, that’s not the mission: “Our mission is to accelerate science. And I don’t think the bar for the acceleration of science is, like, Einstein-level reimagining of an entire field.”

    For Weil, the question is this: “Does science actually happen faster because scientists plus models can do much more, and do it more quickly, than scientists alone? I think we’re already seeing that.”

    In November, OpenAI published a series of anecdotal case studies contributed by scientists, both inside and outside the company, that illustrated how they had used GPT-5 and how it had helped. “Most of the cases were scientists that were already using GPT-5 directly in their research and had come to us one way or another saying, ‘Look at what I’m able to do with these tools,’” says Weil.

    The key things that GPT-5 seems to be good at are finding references and connections to existing work that scientists were not aware of, which sometimes sparks new ideas; helping scientists sketch mathematical proofs; and suggesting ways for scientists to test hypotheses in the lab.  

    “GPT 5.2 has read substantially every paper written in the last 30 years,” says Weil. “And it understands not just the field that a particular scientist is working in; it can bring together analogies from other, unrelated fields.”

    “That’s incredibly powerful,” he continues. “You can always find a human collaborator in an adjacent field, but it’s difficult to find, you know, a thousand collaborators in all thousand adjacent fields that might matter. And in addition to that, I can work with the model late at night—it doesn’t sleep—and I can ask it 10 things in parallel, which is kind of awkward to do to a human.”

    Solving problems

    Most of the scientists OpenAI reached out to back up Weil’s position.

    Robert Scherrer, a professor of physics and astronomy at Vanderbilt University, only played around with ChatGPT for fun (“I used to it rewrite the theme song for Gilligan’s Island in the style of Beowulf, which it did very well,” he tells me) until his Vanderbilt colleague Alex Lupsasca, a fellow physicist who now works at OpenAI, told him that GPT-5 had helped solve a problem he’d been working on.

    Lupsasca gave Scherrer access to GPT-5 Pro, OpenAI’s $200-a-month premium subscription. “It managed to solve a problem that I and my graduate student could not solve despite working on it for several months,” says Scherrer.

    It’s not perfect, he says: “GTP-5 still makes dumb mistakes. Of course, I do too, but the mistakes GPT-5 makes are even dumber.” And yet it keeps getting better, he says: “If current trends continue—and that’s a big if—I suspect that all scientists will be using LLMs soon.”

    Derya Unutmaz, a professor of biology at the Jackson Laboratory, a nonprofit research institute, uses GPT-5 to brainstorm ideas, summarize papers, and plan experiments in his work studying the immune system. In the case study he shared with OpenAI, Unutmaz used GPT-5 to analyze an old data set that his team had previously looked at. The model came up with fresh insights and interpretations.  

    “LLMs are already essential for scientists,” he says. “When you can complete analysis of data sets that used to take months, not using them is not an option anymore.”

    Nikita Zhivotovskiy, a statistician at the University of California, Berkeley, says he has been using LLMs in his research since the first version of ChatGPT came out.

    Like Scherrer, he finds LLMs most useful when they highlight unexpected connections between his own work and existing results he did not know about. “I believe that LLMs are becoming an essential technical tool for scientists, much like computers and the internet did before,” he says. “I expect a long-term disadvantage for those who do not use them.”

    But he does not expect LLMs to make novel discoveries anytime soon. “I have seen very few genuinely fresh ideas or arguments that would be worth a publication on their own,” he says. “So far, they seem to mainly combine existing results, sometimes incorrectly, rather than produce genuinely new approaches.”

    I also contacted a handful of scientists who are not connected to OpenAI.

    Andy Cooper, a professor of chemistry at the University of Liverpool and director of the Leverhulme Research Centre for Functional Materials Design, is less enthusiastic. “We have not found, yet, that LLMs are fundamentally changing the way that science is done,” he says. “But our recent results suggest that they do have a place.”

    Cooper is leading a project to develop a so-called AI scientist that can fully automate parts of the scientific workflow. He says that his team doesn’t use LLMs to come up with ideas. But the tech is starting to prove useful as part of a wider automated system where an LLM can help direct robots, for example.

    “My guess is that LLMs might stick more in robotic workflows, at least initially, because I’m not sure that people are ready to be told what to do by an LLM,” says Cooper. “I’m certainly not.”

    Making errors

    LLMs may be becoming more and more useful, but caution is still key. In December, Jonathan Oppenheim, a scientist who works on quantum mechanics, called out a mistake that had made its way into a scientific journal. “OpenAI leadership are promoting a paper in Physics Letters B where GPT-5 proposed the main idea—possibly the first peer-reviewed paper where an LLM generated the core contribution,” Oppenheim posted on X. “One small problem: GPT-5’s idea tests the wrong thing.”

    He continued: “GPT-5 was asked for a test that detects nonlinear theories. It provided a test that detects nonlocal ones. Related-sounding, but different. It’s like asking for a COVID test, and the LLM cheerfully hands you a test for chickenpox.”

    It is clear that a lot of scientists are finding innovative and intuitive ways to engage with LLMs. It is also clear that the technology makes mistakes that can be so subtle even experts miss them.

    Part of the problem is the way ChatGPT can flatter you into letting down your guard. As Oppenheim put it: “A core issue is that LLMs are being trained to validate the user, while science needs tools that challenge us.” In an extreme case, one individual (who was not a scientist) was persuaded by ChatGPT into thinking for months that he’d invented a new branch of mathematics.

    Of course, Weil is well aware of the problem of hallucination. But he insists that newer models are hallucinating less and less. Even so, focusing on hallucination might be missing the point, he says.

    “One of my teammates here, an ex math professor, said something that stuck with me,” says Weil. “He said: ‘When I’m doing research, if I’m bouncing ideas off a colleague, I’m wrong 90% of the time and that’s kind of the point. We’re both spitballing ideas and trying to find something that works.’”

    “That’s actually a desirable place to be,” says Weil. “If you say enough wrong things and then somebody stumbles on a grain of truth and then the other person seizes on it and says, ‘Oh, yeah, that’s not quite right, but what if we—’ You gradually kind of find your trail through the woods.”

    This is Weil’s core vision for OpenAI for Science. GPT-5 is good, but it is not an oracle. The value of this technology is in pointing people in new directions, not coming up with definitive answers, he says.

    In fact, one of the things OpenAI is now looking at is making GPT-5 dial down its confidence when it delivers a response. Instead of saying Here’s the answer, it might tell scientists: Here’s something to consider.

    “That’s actually something that we are spending a bunch of time on,” says Weil. “Trying to make sure that the model has some sort of epistemological humility.”

    Watching the watchers

    Another thing OpenAI is looking at is how to use GPT-5 to fact-check GPT-5. It’s often the case that if you feed one of GPT-5’s answers back into the model, it will pick it apart and highlight mistakes.

    “You can kind of hook the model up as its own critic,” says Weil. “Then you can get a workflow where the model is thinking and then it goes to another model, and if that model finds things that it could improve, then it passes it back to the original model and says, ‘Hey, wait a minute—this part wasn’t right, but this part was interesting. Keep it.’ It’s almost like a couple of agents working together and you only see the output once it passes the critic.”

    What Weil is describing also sounds a lot like what Google DeepMind did with AlphaEvolve, a tool that wrapped the firms LLM, Gemini, inside a wider system that filtered out the good responses from the bad and fed them back in again to be improved on. Google DeepMind has used AlphaEvolve to solve several real-world problems.

    OpenAI faces stiff competition from rival firms, whose own LLMs can do most, if not all, of the things it claims for its own models. If that’s the case, why should scientists use GPT-5 instead of Gemini or Anthropic’s Claude, families of models that are themselves improving every year? Ultimately, OpenAI for Science may be as much an effort to plant a flag in new territory as anything else. The real innovations are still to come. 

    “I think 2026 will be for science what 2025 was for software engineering,” says Weil. “At the beginning of 2025, if you were using AI to write most of your code, you were an early adopter. Whereas 12 months later, if you’re not using AI to write most of your code, you’re probably falling behind. We’re now seeing those same early flashes for science as we did for code.”

    He continues: “I think that in a year, if you’re a scientist and you’re not heavily using AI, you’ll be missing an opportunity to increase the quality and pace of your thinking.”

    Share. Facebook Twitter Pinterest LinkedIn Reddit WhatsApp Telegram Email
    Previous ArticleWhy chatbots are starting to check your age
    Next Article Apple may have scaled back a few of its original AI features for Siri
    TechAiVerse
    • Website

    Jonathan is a tech enthusiast and the mind behind Tech AI Verse. With a passion for artificial intelligence, consumer tech, and emerging innovations, he deliver clear, insightful content to keep readers informed. From cutting-edge gadgets to AI advancements and cryptocurrency trends, Jonathan breaks down complex topics to make technology accessible to all.

    Related Posts

    Garmin rolling out new stable smartwatch update with course related bug fix

    January 28, 2026

    Windows 11 KB5074109 update nukes Nvidia gaming performance and stability

    January 28, 2026

    Peak60: Premium keyboard brand launches kiln-fired ceramic case for Wooting 60HE and kin with launch discount

    January 28, 2026
    Leave A Reply Cancel Reply

    Top Posts

    Ping, You’ve Got Whale: AI detection system alerts ships of whales in their path

    April 22, 2025641 Views

    Lumo vs. Duck AI: Which AI is Better for Your Privacy?

    July 31, 2025241 Views

    6.7 Cummins Lifter Failure: What Years Are Affected (And Possible Fixes)

    April 14, 2025143 Views

    6 Best MagSafe Phone Grips (2025), Tested and Reviewed

    April 6, 2025111 Views
    Don't Miss
    Gaming January 28, 2026

    Amazon announces further layoffs, 16,000 roles impacted

    Amazon announces further layoffs, 16,000 roles impacted Firm continuing efforts to “reduce layers, increase ownership,…

    No more chasing competitors or following trends: Why RuneScape is going back to its British roots

    Jack Emmert returns to Cryptic Studios as CEO

    GOG boss admits pulling Taiwanese horror title Devotion cost it “credibility”

    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Get the latest creative news from SmartMag about art & design.

    About Us
    About Us

    Welcome to Tech AI Verse, your go-to destination for everything technology! We bring you the latest news, trends, and insights from the ever-evolving world of tech. Our coverage spans across global technology industry updates, artificial intelligence advancements, machine learning ethics, and automation innovations. Stay connected with us as we explore the limitless possibilities of technology!

    Facebook X (Twitter) Pinterest YouTube WhatsApp
    Our Picks

    Amazon announces further layoffs, 16,000 roles impacted

    January 28, 20262 Views

    No more chasing competitors or following trends: Why RuneScape is going back to its British roots

    January 28, 20262 Views

    Jack Emmert returns to Cryptic Studios as CEO

    January 28, 20261 Views
    Most Popular

    A Team of Female Founders Is Launching Cloud Security Tech That Could Overhaul AI Protection

    March 12, 20250 Views

    7 Best Kids Bikes (2025): Mountain, Balance, Pedal, Coaster

    March 13, 20250 Views

    VTOMAN FlashSpeed 1500: Plenty Of Power For All Your Gear

    March 13, 20250 Views
    © 2026 TechAiVerse. Designed by Divya Tech.
    • Home
    • About Us
    • Contact Us
    • Privacy Policy
    • Terms & Conditions

    Type above and press Enter to search. Press Esc to cancel.